Butanol Production by a Butanol-Tolerant Strain of Clostridium acetobutylicum in Extruded Corn Broth.

نویسندگان

  • Y L Lin
  • H P Blaschek
چکیده

By employing serial enrichment, a derivative of Clostridium acetobutylicum ATCC 824 was obtained which grew at concentrations of butanol that prevented growth of the wild-type strain. The parent strain demonstrated a negative growth rate at 15 g of butanol/liter, whereas the SA-1 mutant was still able to grow at a rate which was 66% of the uninhibited control. SA-1 produced consistently higher concentrations of butanol (from 5 to 14%) and lower concentrations of acetone (12.5 to 40%) than the wild-type strain in 4 to 20% extruded corn broth (ECB). Although the highest concentration of butanol was produced by SA-1 and the wild-type strain in 14% ECB, the best solvent ratio with respect to optimizing butanol and decreasing acetone occurred between 4 and 8% ECB for SA-1. SA-1 demonstrated higher conversion efficiency to butanol than the wild-type strain at every concentration of ECB tested. Characterization of the wild-type and SA-1 strain in 6% ECB demonstrated the superiority of the latter in terms of growth rate, time of onset of butanol production, carbohydrate utilization, pH resistance, and final butanol concentration in the fermentation broth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation

UNLABELLED BACKGROUND Previously we have developed a butanol tolerant mutant of Clostridium acetobutylicum Rh8, from the wild type strain DSM 1731. Strain Rh8 can tolerate up to 19 g/L butanol, with solvent titer improved accordingly, thus exhibiting industrial application potential. To test if strain Rh8 can be used for production of high level mixed alcohols, a single secondary alcohol deh...

متن کامل

Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition

In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum cultu...

متن کامل

Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation o...

متن کامل

Electron Spin Resonance Analysis of the Effect of Butanol on the Membrane Fluidity of Intact Cells of Clostridium acetobutylicum.

Analysis of electron spin resonance spectra of 5-doxyl stearic acid in aqueous suspensions of Clostridium acetobutylicum ATCC 824 and the butanol-tolerant SA-2 derivative during a small-scale fermentation at three different butanol challenge levels indicated that the SA-2 strain is able to respond to the physical fluidizing effect of high (1.5%) butanol challenge by reducing its membrane fluidi...

متن کامل

Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum

Strain tolerance to toxic metabolites remains an important issue in the production of biofuels. Here we examined the impact of overexpressing the heterologous groESL chaperone from Clostridium acetobutylicum to enhance the tolerance of Escherichia coli against several stressors. Strain tolerance was identified using strain maximum specific growth rate (μ) and strain growth after a period of sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 45 3  شماره 

صفحات  -

تاریخ انتشار 1983